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We study a simple model equation describing a system with an infinity of 
degrees of freedom which displays an intrinsically chaotic behavior. Some 
concepts of fully developed turbulence are discussed in relation to this model. 
We also develop an approach based on Lyapunov exponent measurements. 
Numerical results on the distribution of Lyapunov numbers and the power 
spectrum of the associated Lyapunov vectors are presented and briefly 
discussed. 
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With current computer technology, it is still difficult to model three- 
dimensional flows at large Reynolds numbers and to find their statistical 
properties with sufficient accuracy. A possible way of circumventing these 
difficulties is to use model equations displaying spatiotemporal chaos, but 
which are simple enough to make detailed numerical investigation possible. 
A good candidate for this modeling is the equation (x) 

r + q~q~x + ~~ + q~xxxx = 0 (1) 

where (a(x, t) is a smooth function of space (x) and time (t) and where ~0, 
denotes ~r In the dimensionless form (1), the external parameter, which 
could be seen as a kind of Reynolds number, is the length L of the support 
of ~0. The boundary conditions can be chosen as r = ~Px = 0 at x = 0, L or 
one may impose L periodicity: ~p(x + L)  = ~p(x). Both choices lead to a very 
similar bulk behavior when L is large enough, say, larger than 20. As L 
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exceeds some critical value (~ i0 )  the space-time fluctuations of ~0 
spontaneously reach a turbulent regime, without any external random stirring 
and for a large class of initial conditions. Obviously equation (1) has only a 
loose connection with three-dimensional Navier-Stokes equations. However, 
it remains interesting to use concepts introduced in the study of fully 
developed turbulence such as energy spectra, transfer of energy, etc. On the 
other hand, it is possible to consider that Eq. (1) defines a dynamical system 
with many degrees of freedom and to study its properties from this point of 
view. In this paper we try to combine these different approaches to get some 
insight in the dynamical mechanism at work in fully developed turbulence. 

The chaotic regime of Eq. (1) defines a statistical ensemble {r t)} 
translationally invariant with respect to t and x, at least for space fluc- 
tuations much smaller than L. As usual, observables are in fact obtained 
through time averages ( . . . ) .  One of the quantities of primary interest is 
S(k)=(l~0kl 2) which, in the limit of large L restoring translational 
invariance, is the Fourier transform of the two-point spatial correlation 
function. Figure 1 displays S(k )  as a function of k using log-log and lin-log 
coordinates. S(k )  is flat near k = 0 (Fig. la), a property which is reminiscent 
of the equipartition of energy. ~2) It has a sharp maximum near k 0 -- l /v /2  
which is the wave vector of the most unstable fluctuations near the uniform 
steady state (p = 0. The spectrum then decreases for k > k 0, following first a 
power law approximately as  k -4  (Fig. la) and then an exponential decay as 
e x p ( - k / k a )  when k becomes larger and larger (Fig. lb). This behavior is 
reminiscent of what occurs in three-dimensional fully developed turbulence. 
This analogy has motivated the following interpretation. 

On general grounds, the k - 4  subrange can be understood as due to 
discontinuities of the derivative q)x (that is, cusp points for ~o), although this 
is not obvious at all from the instantaneous shape of the function q~(x, t). 
Indeed one has in mind the phenomenon occurring, e.g., in Burger's equation 

~t u + U ~x u = V ~xx u 

In the inviscid case (v = 0) shocks appear, and for small nonzero viscosity 
the solution is still reminiscent of these singularities and displays a k -2 
spectrum for k small enough. 

In the same spirit, the exponential decay of S(k )  at large k may be 
related to the existence of singularities of the complex x extension of ~o(x, t) 
beyond some fixed distance (of the order of ki -1) from the real axis. t3) But 
here we would like to point out a relation between these two parts of the 
spectrum which derive from the adaptation of an argument first presented by 
Corrsin in the context of usual (three-dimensional) developed turbulenceS4): 
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Fig. I. Power spectrum S(k) for L=512. (a) Log-log plot: Note the flat spectrum for 
k < k 0 = I/~/2, the broad peak at k ~ ko, and the power |aw decay S(k) - k 4 for k o < k < i. 
(b) Lin-log p)ot: The cross-over from the power ]aw decay to the e• behavior for 
k >> i is clearly visible. (Courtesy P. Manneville DPh-O/PSRM Saclay). 
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From (1) and the boundary condition one can derive an "energy 
budget": 

(9~) = ((oZx) (2) 

where (~0~) represents the energy injected by the instability, i.e., the term ~0xx 
in (1), and (~02x) the dissipation of this energy ensured by the stabilizing 
term rp . . . .  in (1). But whereas more energy is injected than dissipated at k 
smaller than k 0, dissipation prevails over injection in the large-k range. So 
the mean energy budget (2) is satisfied only if an energy flux T(k) takes 
place in the k space from small to large k values. This energy transfer is due 
to the nonlinear term q~q~x in (1). To approach this phenomenon quan- 
titatively, one writes an equation for the energy transfer in k space for large 
k as 

dT(k)/dk = -k4S (k) (3) 

where T(k) is the energy flux due to nonlinear terms and -k4S(k) the energy 
dissipated at large k. For Newtonian fluids dissipation comes from the effect 
of viscosity so that the right-hand side of (3) would read -vk2S(k). The 
expression of T(k) as a function of k and S(k) remains to be given. This step 
involves a nontrivial guess because the local energy transfer (LET) in the k 
space does not follow unambiguously from the original equations. However 
we can reason as follows. In the present problem the k -4 subrange can be 
identified with the inertial subrange, that is, a wave vector domain where the 
evolution is controlled by the nonlinear transfer term since for k ~ 1 the 
growth due to the instability term is nearly compensated for by the decay 
due to the dissipation term. This compensation implies that T(k) is 
independent of k in the "inertial" part of the spectrum. If one further 
assumes that the flux of energy is proportional to the energy density and if 
one takes into account the k -4 power law of the observed spectrum in the 
inertial subrange one is led to T(k)~ k4S(k). Solving now (3) one finds 
S(k) ~ k -4 exp(-k/kO, which would explain the exponential decay of S(k) 
at large k. 

Let us now discuss the long-wavelength part of the spectrum (0 < k < 
0.6ko). In this domain S(k) is observed to be almost constant. This is what 
one would expect from equipartition of energy in a Gibbs ensemble. Actually 
S(k) is the "energy" of a fluctuation with wave number k. Nevertheless the 
reason that this should be the energy (as it occurs in the Gibbs-Boltzmann 
statistical weight) is not entirely clear since it is not the only quantity 
conserved by the nonlinear term. Indeed the "inviscid" equation: 

~t + ~oq~x = 0 (4) 
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leaves f0 L 09 2 dx invariant so that 0) 2 m a y  be considered as the energy density, 
but any quantity of the form f~dxF{~o}, F a smooth function, is also 
conserved by Eq. (4) and there is no clear reason to choose ~0 z as energy 
density instead of, say ,  ~0 6 or  ~0 2/3. In order to clarify this point we have 
considered the slightly different equation: 

~~ + O)(Px + q)xx + q~xx:r + eq) = 0 (5) 

This equation also has chaotic solutions for sufficiently small positive e and 
L large enough, as can be seen from the existence of strictly positive 
Lyapunov exponents we have computed. The e~0 term (e > 0) introduces a 
dissipation at all wavelengths so that in the "inviscid limit" the Riemann 
invariants are now exponentially damped along the characteristics during the 
evolution. We have computed the spectrum S(k) of the turbulent fluctuations 
with Eq. (5). These spectra corresponding to different values of e are very 
similar to the spectrum obtained for e = 0 [Eq. (1)]. In particular the flat 
part at small k is almost unchanged. This casts doubt on the connection 
between energy conservation and the fiat spectrum at small k. It is also of 
interest to note that in the "inertial range" the spectrum is of the form k - "  
with n increasing as e increases (see Table I). This can be understood by 
using in a simplified way the idea of LET. In the inertial regime the energy 
flux in k space obeys the equation 

dT(k)/dk = 0 (6) 

but for e > 0 a k-independent power loss exists. Thus one has to add to the 
right-hand side of (6) a term - S ( k ) ,  and if one assumes again T(k) ~ k4S(k) 
one finds 

d(k4S(k))/dk = - eS (k )  

which has the solution 

S(k) = k -4 exp(e/3k 3) " 

so that the spectrum decreases more rapidly than k 4 at large k, which we 
interpret as an increase of the effective exponent. The weakness of this 
reasoning is of course in the assumed relation between T(k) and S(k). 

Table I 

eps 0. 0.0005 0.005 0.05 
exp 3.99 4.15 4.32 5.15 
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Up to now the kind of approach used was traced from the standard 
statistical theory of developed turbulence. In the following we shall join the 
main flow of more recent approaches to nonlinear phenomena in terms of 
dynamical systems. 

Here we are concerned with a single but functional degree of freedom 
governed by a partial differential equation. This corresponds to an infinite- 
dimensional system of discrete degrees of freedom. Extensions to infinite 
dimensionality of the theory developed for systems of low dimensionality 
have already been considered from a theoretical point of view (D. Ruelle for 
Navier-Stokes equations (5)) or numerically (D. Farmer for a differential 
equation with delay(6)). Analytical results for equation (1) are rather 
scarce (7) and to get a better knowledge of its turbulent solutions one is left 
with the recourse to numerical simulations. In this paper we shall report 
mainly on results concerning the Lyapunov numbers (LN for short) which 
measure the degree of instability of trajectories in phase space (8) and provide 
information on the nature of the chaotic behavior of the system. ~ 

Here the degrees of freedom are the values of the (0 at N space grid 
points and their evolution can be obtained quite efficiently using a finite 
difference implicit scheme which requires on the order of N arithmetic 
operations per time step without stringent numerical stability restrictions. 

The LN are associated with the mean unstable directions of motion in 
phase space and the number of positive LN can be understood as the 
effective number of "degrees of freedom" of the turbulent system. To make 
this more precise in the large-L limit we have considered the distribution and 
values of these LN and their associated "Lyapunov vectors" (LV), and we 
have tried to reach the mean spatial structure corresponding to the positive 
LNs. The eigenvalues and eigenvectors defined by the tangent motion fluc- 
tuate so that there is some arbitrariness in defining the mean properties of 
these Lyapunov vectors. The LNs can be determined by measuring how a 
small parallelepiped in the tangent space to the phase space at Po [in our 
case Po is equivalent to the specification of the Cauchy data O(x) at t = 0] is 
strained during the evolution of the system. (8) This procedure avoids a brute 
diagonalization of the matrix of the tangent evolution which would be 
untractable at large N. 

To compute the LNs and the LVs we proceed in several steps: 

(i) We start at Po in phase space and take an orthogonal family o f p  
arbitrary independent vectors in tangent space: ~Pto, i = 1 ..... p. 

(ii) Then we integrate numerically Eq. (1) during a time step At, with 
initial conditions Po, Po + fiP~, Po + ~P~ "'" Po + ~P~ and determine the 
vectors M(At). 6Pi 0 = fiP~, where M(At) is the matrix of the tangent motion, 

(iii) By standard Gram-Schmidt orthogonalization we define from the 
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' ~/~ where i = I P',I and ~P~" ~e'l ~ij. At this 6Ps a new family ~P~ = a I a 1 �9 = 

step we have defined another point in phase space P~ and a new orthonormal 
family 6P~. An iteration of  this procedure allows to define p numbers a~, 
i - -  1,..., p and p orthonormal vectors 6P/k, i = 1 ..... p. The average of  ln(a~) 
for a given i gives the value of  the ith LN, while the {6P~} gives us what we 
call the Lyapunov vectors which span in the mean the unstable directions of  
the system. 

It is possible to compute up to 40-50  LN by the process defined above. 
One of  our main result concerns the growth of  the number of  positive 
Lyapunov exponents (LN) with the size of  the system which is found to be 
linear with L. Such a result is interesting since the number of  positive LN 
provides estimates of  the dimension of  strange attractors (which is a measure 
of  the number of  degrees of  freedom), the entropy, and other quantities 
which measure the amount of  chaos. It has also been established that (i) with 
the dimensionalization used in writing (1) the largest LN tends to a finite 
value 20 of  the order of  0.1 as L increases; (ii) the distribution of  positive 
LN has no obvious singularity near )~0 from below (Fig. 2). Although our 
statistics are still rather insufficient. Some recent results ~1~ confirm this 
statement. (Fig. 3). This contrasts with the distribution of  the growth rates of  
unstable fluctuations of  (1) near ~0 = 0. As a function of  the wave number k 
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Fig. 2. Number of positive Lyapunov numbers as a function of the length L: N(L) = 0.14 L 
--1.5, note (i) that this number reaches zero for L = 11 which corresponds fairly well to the 
value of the onset of turbulence, and (ii) that it grows more slowly than the number of linearly 
unstable modes (=L/zr ~ 0.32 L). 
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Fig. 3. Distribution ofthe positive Lyapunov numbers for L = 400: There is no evidence of 
accumulation near the mximum value 0.1 (itself smaller than the growth rate of the most 
unstable mode). 

this growth rate is ? ( k ) =  k 2 -  k 4. For  a large L the wave numbers are 

uniformly distr ibuted with a spacing 27r/L and the distr ibution of  the posit ive 
growth rates has an inverse square root  s ingulari ty at 0 and at the largest  

growth rate 0.25. 
To get more information about  the divergence of  t rajectories  we have 

computed the mean spectral  power of  the LV{fiP~}. These vectors are 
actual ly  functions of  x and can be Four ier  t ransformed:  

6Pi(x ) = ~ exp(2i~kx/L ) lri(k ) 
k 

For  each wave number k and each integer i (1 < i < p )  we have computed:  

M 

( ]x"(k) t2)=  ( l / M )  ~ I~i(k)l ~ 
/ = 1  
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where M is the number of  iterations. The numerical results are given in 
Fig. 4. The average spectra corresponding to the 15 largest LN were 
computed using 1280 samples for L = 128. These spectra have noticeable 
features. First of  all the large wave number dependence is almost the same 
for all spectra and the spectral power decays exponentially for k > 1. The 
algebraic part (k -4) of  the spectrum of ~0(x, t) itself is no longer apparent in 
the spectrum of the LV. The relative spectral power at low wave numbers 
increases from the first to the 15th vector. 

Now we try to get information in the mechanism of energy transfer 
from the spectra of  LV. 

Let us suppose that a cascade process takes place in wave vector space. 
This would imply that energy is transferred from wavevector k 1 to k 2 ( > k l )  

and then to k 3 (>k2).  So one of  the LV would correspond to the energy 
transfer from k 1 to k 2 and thus have a peak of  spectral power around k 2 
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Fig. 4. Power spectra of some "Lyapunov vectors" corresponding to positive Lyapunov 
Numbers for L = 128. The power contents of the long wavelengths steadily increases when 
passing from the first L N  (D) to the 5 (�9 then to the 10 (~), and the 15 (11). 
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because the corresponding dynamics is a growth of the mean spectral power 
near k 2. The spectra that we have obtained did not display such peaks. A 
possible reason for this could be the limited width of the inertial region 
which would inhibit the development of the cascading process. (4b) But 
another explanation involves the growth and death of localized structures of 
size 1/k o without any cascading process. Then all the LV share the signature 
of this structure in the large wave number part of their power spectrum while 
the small wave number part reflects more or less the effects of various 
possible arrangements of these localized structures. The energy transfer 
through the growth and death of these localized structures could be strongly 
dependent on the number of spatial dimensions. Indeed, one may decompose 
the tangent motion by solving the spectral problem: 

6~ ~ + ~(~x + (~ ~)x = ~ ~ (7) 

with 6~0{a): 0 for x : 0, L, (0(., .) being a "random" solution of (1). This 
spectral problem has a unusual form. But, as in the localization problem of a 
quantum particle in a random potential, (~) the random quantity q~(x, t) [or 
~0x(x, t)] multiplies of the lower derivatives of 6qr a), so that (p can still be 
seen as a random potential. It is well known that the localization depends in 
a highly nontrivial way on the dimensionality. 

The importance of large-scale coherent structures in hydrodynamic 
turbulence is strongly suggested by experiments{~2); the study of the 
localization-like problem defined by (7) is a possible starting point for a 
theoretical approach to this phenomenon. The mechanism proposed above is 
fairly different from the classical approaches which rest mainly on LET 
assumptions. Other numerical results are needed to make these ideas more 
precise. 

In conclusion we have investigated the turbulent behavior of equation 
(1) from different standpoints. Several different concepts have been 
introduced and developed. We would like to stress several points. First, some 
of the concepts introduced in the study of hydrodynamic turbulence lead to a 
fairly good understanding of the energy spectrum of turbulent solutions of 
Eq. (1). Secondly, the results obtained concerning the linear growth of the 
number of positive LN with size L answer--at  least numerically--some 
open theoretical questions concerning the problem of turbulent degrees of 
freedom. 

Finally we have proposed explanations for the observed spectra of LV 
for Eq. (1). Checking these concepts and extending them to three- 
dimensional Navier-Stokes equations will certainly lead to a better 
understanding of turbulence. 
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